Subscribe to RSS
UnitedStates Germany Russia India Turkey SouthAfrica England Netherlands Philippines Belgium Australia Brazil Spain China Kore

Identifying and correcting the causes of bearing failure


Barden Bearing failr1

Identifying and analysing the root cause of a bearing failure is critical in order to prevent similar failures from occuring again. Brian Williams, Quality Director at The Barden Corporation, urges companies to introduce a regime that enables the symptoms of bearing damage to be recognised early, as well as putting a systematic procedure in place for securing damaged bearings.

Many bearings that fail are removed and replaced too quickly without sufficient levels of analysis into what caused their failure. This means that similar failures could occur again, resulting in further damage and costly unscheduled downtime.

Examination of the failure mode often reveals the true cause of bearing failure, but this procedure is complicated by the fact that one failure mode may initiate another. For example, corrosion in a ball raceway leaves rust (an abrasive), which can cause wear, resulting in loss of preload or an increase in radial clearance. The wear debris can, in a grease-lubricated bearing, impede lubrication, resulting in lubrication failure and subsequent overheating.

Companies can address these issues by developing a systematic procedure for securing and inspecting bearings once they become damaged. Engineers should not wait until the bearing failure becomes catastrophic, as this makes root cause analysis difficult. Instead, engineers need to perform regular monitoring and inspection of the bearings.

Barden Bearing failr2

When precision ball bearings or rolling bearings fail, the results can be costly in terms of machine downtime and ‘lost’ production. Fortunately, catastrophic failures of bearings are rare. Usually there are distinct symptoms that indicate the type of damage incurred long before the bearings actually fail. It is therefore important for companies to have a regime in place that enables the symptoms of bearing damage to be recognised early in their development. Once this has been acheived there must also be a system in place that preserves the condition of the bearings when they are removed from the machine in their damaged state. This is critical in assisting the bearing manufacturer to analyse the causes of failure and to avoid similar issues in the future.

Operating behaviour indicates damage

Experience shows that damge to, and subsequent failure of, bearings is seldom due to faults in the bearings themselves, but more often due to the treatment they have received or the use to which they have been put. Often, the first sign of damage is indicated by unusual operating behaviour of the bearings. This can take the form of uneven running, reduced working accuracy, unusual running noises or any combination of the three. It is critical for these early indicators to be logged, as information gained in this early period of degradation can be very useful in identifying te root cause of a problem. Often, as a bearing becomes more damaged, root cause analysis becomes increasingly difficult.

Barden Bearing failr3

The key to detecting the early signs of a problem is effective bearing monitoring. This can take many forms, but for the vast majority of bearing applications the monitoring supplied by the machine operator is usually sufficient to detect unusual noises at an early stage. In situations where downtime is critical or hazardous, then more formalised monitoring is required. A number of methods are available including monitoring lubricant cleanliness, measuring bearing temperature and vibration analysis.

The type of condition monitoring employed is as much a factor of the experience of previous failures as the production environment in which the bearings are used. Bearing damage can generally be classified into two groups – localised or widespread. Localised damage is usually restricted to specific locations on the bearing. This can take the form of indentations caused by rolling elements, corrosion or fractures. It can be recognised most easily using a combination of vibration and lubricant monitoring. Vibration methods will also reliably detect fatigue damage at any early stage, but are not suitable for detecting lubrication problems.

Widespread damage is often the result of an insufficient supply of clean lubricant. Failures of this type can be detected by monitoring the lubricant suppply. Oil flow can be monitored for pressure, flow and cleanliness. A magnetic plug gives a crude indicaton of lubricant condition, whilst a spectral analysis can be used to provide a more precise check.

Temperature can be monitored using thermocouples and gives a very reliable indicator of impending bearing problems. Normally a system should reach a steady state temperature and will show a sudden rise when there is a lack of lubricant. Typically, with grease, the temperature will rise unevenly over time if there is a general deterioration in the grease condition.

Securing damaged bearings

When a bearing has to be removed from a machine due to damage, the cause must be established to avoid future failures. Inspection of the bearings alone is not normally enough to pinpoint the exact cause of the damage, but rather the inspection of the mating parts, lubrication and sealing, as well as the operating and environmental conditons.

A systematic procedure for removal should be followed to securing and inspecting the bearing. The recommended sequence of measures is shown below:

  1. Determine operating data
  2. Evaluate records and charts from any bearing monitoring devices
  3. Extract lubricant samples
  4. Check bearing environment for external influences and other damage
  5. Assess the bearing in its mounted condition
  6. Mark the mounting position
  7. Dismount the bearing
  8. Mark bearings and parts
  9. Check beating seats
  10. Assess complete bearing

The above methodology is a comprehensive one for carrying out damage assessment. However, its usefulness will decline if the level of damge in allowed to become excessive. The earlier a bearing can be dismounted, the more effective the assessment process will be.


For your copy of Barden’s ‘Bearing Failure: Causes and Cures’ guide, please click here. The guide describes the 12 primary causes of bearing failure, illustrated by close-up, colour photographs. Specific remedies are also suggested for each failure

source: Barden Bearing

0 commentsback to post


Add your comment



Other articlesgo to homepage



轴承生产工业面临问题以及趋势 磨削,是轴承生产工业的核心手段。它占据了主要的 生产时间与成本。磨削的质量以及生产率关系到轴承企业 的成功与否。 浮动夹持臂型无心研磨(通常称为 ‘Microcentric’) 是生产轴承环最常见的技术。它是如此普遍,因为三个主 要优点: – 非常快速的工件装卸。 -轴承环是在无应力状态下磨削。加工后,它几乎没有变形。 – 完全有可能达到超出加工机床本身主轴的更好的精 度/圆度。同时,Microcentric 术有几个重要的根本弱点: 1。磨削过程中的几何和动态稳定性较低。最后的轴承 环的圆度对于“浮动夹持臂”的最佳位置,环的初始圆度 ,进给率和其他条件,等等,是非常敏感的。由于上述因 素的影响,各次谐波可能会再次产生,越来越多。 2。大量的时间用在修改机床的设置,只有训练有素的 人可以做这个工作。操作者必须找到“浮动夹持臂”的最 佳位置(浮动夹持臂与磨削点之间的α和β夹角)。最佳 α-β角是实现最好的精度与最高的效 率之间的平衡点。通常需要多次的反复尝试。此外,这项 技术要求做定期的精度监测和定期机床调整。 3。工件加工系统的刚度不足—-薄壁轴承—- 它已经成为薄壁轴承加工的巨大的问题。 克服上述技术缺陷是至关重要的。目前全球轴承市场竞争非常激烈,市场要求更高的精度和更多的客 户特定轴承,但价格却要适中。 许多轴承在小批量的生产中。在这样的条件下,要赚钱,则技术灵活性是关键。缺乏技术的非熟练工 业劳动力打击了所有的经济体。漫长而复杂的机器设置变成一个真正的问题。 此外,因为新钢材料应用和先进的设计,使得现代轴承变得越来越轻,这意味着轴承环变得越来越薄, 则轴承工件系统的刚度越来越低。 RON-Centric RON-Centric 技术,是最新一代的“浮动夹持臂”无心研磨技术。 它保持了所有的传统技术优势,并消除了传统技术的主要缺点。 RON-Centric 技术可以在同时实现很高的柔性,精度以及生产效率µ RON-Centric 是一新的工装系统,它取代了传统的Microcentric 夹具。这项技术是基于独特的“多点聚焦中心”的概念。侧“浮动夹 持臂”的设计,用数学优化纠正工件的圆度误差。叠层的精密的“浮 点”由高强度钛合金制成的,内部有无摩擦的柔性铰链提供的的六个 自由度。 RON-Centric 独特的设计,确保控制了任何圆度偏差从2至500谐波。 由于最佳的内部结构,RON-Centric系统不需要任何优化的α-β 的角度。侧面“浮动夹持点”始终是固定的通过主轴中心(从研磨点 为180度的位置)。底部的“浮点”位置不是很重要而且相应的有不 同的变化。 其结果,RON-Centric提供了许多不可替代的优点,这些对于提高总效 率至关重要: 1。非常稳定的研磨加工过程。由RON-Centric的内部参数所决定的很 高的几何稳定性,不依赖于α-β的优化。通过最优化的“浮动夹持点”



哥德堡,2013年4月7日——在2013年汉诺威工业博览会上,斯凯孚以“展现斯凯孚知识工程的力量”为主题,推出了一系列产品和解决方案.     近年来,我们将知识集中运用于开发解决方案和不断创新中,以帮助客户在今天、明天乃至未来立于不败之地。我们正在关注完全经过实践验证的解决方案 —— 这些方案在盈利能力和可持续性上具有可以量化的效益. 现在,与斯凯孚合作所带来的优势比以往更多。我们贴近行业客户,并且找到了巧妙的方法利用所获得的知识创造有形价值。今天,我们致力于在资产生命周期从设计至维护的各个阶段中,对机械资产进行追踪,帮助客户改善流程,从而产生更好的结果。 自1907年起,斯凯孚就已成为全球技术供应商中的领导者。斯凯孚的根本优势在于其能够不断开发新的技术,然后运用这些技术创造具有竞争优势的产品。这主要得益于我们将来自斯凯孚技术平台(轴承和轴承单元、密封件、机电一体化、服务和润滑系统)的专业知识与从40多个行业总结得来的实践经验相结合。我们把这称为斯凯孚知识工程。 斯凯孚知识工程是三大业务维度的结合: 1. 文化/地理维度:理解我们生活和工作所处的地区和文化 斯凯孚是一家全球化公司,在世界各地设立分支机构。不论身处何地,我们能够完全理解斯凯孚客户,甚至他们客户的需求。我们的驻地专家在全球各行业专家的支持下,深度分析客户需求,并从全球案例中找到相似情况下的成功案例。 所有这些解决方案的成功实现都依托于一个全球范围的生产系统和细致入微的服务支持网络。 2. 客户维度:工业和行业 斯凯孚为超过2,000,000家客户提供服务。斯凯孚在应用领域中十分活跃,迄今为止,重点关注于约40个行业。涉猎如此之多的领域使斯凯孚积累了足够的经验,能够根据行业特定需求开发产品和服务,并且熟知来自一个行业的知识何时能够被成功应用于另一个行业。这意味着我们已充分了解应用需求和工况,开发出相匹配的解决方案,并且根据行业技术和工程发展不断改善各种解决方案。 3. 竞争力维度:我们的五大技术平台 SKF专家团队在多个领域具备竞争力,如:轴承及轴承单元、密封件、机电一体化、服务和润滑系统,各个团队紧密合作,提供先进的综合解决方案。 通过斯凯孚解决方案工厂网络,中小型原设备制造商客户和终端用户获得了个性化的支持,解决了所面对的特殊挑战。在此,他们能够运用斯凯孚集团五大平台的广泛经验,并且能与本地的斯凯孚工程师进行讨论。斯凯孚通过这一方式为客户提供或开发定制解决方案。 斯凯孚解决方案工厂所提供的各种支持包括:应用工程、轴承和润滑分析、远程状态监测分析、工程咨询、直线运动系统、动力传动产品、密封解决方案、能源和可持续发展管理、资产管理系统和专业技术、主轴翻新、轴承再制造以及各种培训计划。 每一家斯凯孚解决方案工厂都是该网络的一部分,可将全球任一地点获得的知识快速传递并应用至另一个地方。这加速了解决方案的开发,并且促进了知识库的不断扩大。 斯凯孚核心竞争力为知识工程提供支持 自1907年斯凯孚创立以来,SKF集结整个集团的力量,专注于研发领域,获得了无数创新成果,且建立了全新的轴承业标准,开发出全新产品和解决方案。2012年,公司共完成663项发明,初始登记在案的专利申请数量为421件。基于这些专业知识的积累,斯凯孚能够帮助客户提高生产效率,取得更大的成就,创造更多利润。 斯凯孚能够持续开发增强客户竞争优势的产品和服务,这一能力来自两个途径:投资于核心技术领域和专业人士并整合由此获得的知识来满足特定要求。 生命周期管理: 在斯凯孚研究项目中,主要致力于改善客户应用生命周期中的环保性能的项目比重不断增加。这意味着无论在产品生命周期的哪个阶段,我们都会考虑产品或制造流程的环保效益。 为了支持这一积极的发展并促进更具环保性能的技术的使用,斯凯孚近期致力于生命周期管理方案,旨在不断提高斯凯孚产品和制造流程的环保性,同时通过调整日常业务方法和工具将这些知识应用于实践。 可持续发展/环境: 一百多年来,斯凯孚始终关注可持续发展。自从我们于1907年开发出全球第一款自调心球轴承起,斯凯孚就已认识到通过减少摩擦,使运转更加顺畅的重要性。当摩擦减少时,所需的能量也会相应减少。今天,大家都深知使用化石燃料发电对环境所产生的影响。在斯凯孚,我们坚信保护自然环境实际上也是造福于我们的业务,并且是我们所应该做的。现在,我们迈入第2个百年,看到了更大的机遇,同时也承担着更大的责任:我们要在解决全球环境可持续发展这一难题上扮演重要的角色。2005年,我们提出了斯凯孚超越零(SKF BeyondZero*)概念,旨在实现以下两个目标: 减少斯凯孚运营对环境的负面影响,以及 通过创新和提供更具环保性的新技术、产品和服务,增加斯凯孚解决方案对环境的正面影响。 斯凯孚超越零结合了这两大目标,是斯凯孚针对地球所面临的环境问题,作出全方位积极贡献的一次尝试。 全新的斯凯孚超越零组合以及斯凯孚新气候战略和参加世界自然基金会气候拯救者项目的相关目标同样证明了斯凯孚对可持续性和环境的承诺。至今,斯凯孚是唯一一家被纳入气候拯救者项目的工业工程公司。该项目旨在以一种符合实际、可以衡量并且能够被外部专家验证的方式减少二氧化碳等温室气体的排放。斯凯孚专注于汽车和众多客户行业,始终致力于开发能够在设备和机械生命周期各阶段实现这些目标的产品和解决方案。 在汉诺威工业博览会上,斯凯孚展台展出了众多斯凯孚超越零组合产品和解决方案。其中一款引人注目的新产品便是专为污水处理设施通气鼓风机系统开发的驱动解决方案。该产品配备高能效高转速永磁电机、有源磁性轴承 (AMB) 和集成AMB控制系统,能够减少高达40%的能耗。当用于350千瓦鼓风机中时,每年可节能500,000千瓦时,相等于减少了375吨二氧化碳排放。 传感化/状态监测: 为了满足客户对于降低安装成本、缩短安装时间以及增加部件寿命的需求,斯凯孚开发出能够高效利用无线技术的产品。 越靠近接触区进行运行状态监测,系统性能研究就越精确。除了温度之外,速度、旋转方向和振动之外,安装在轴承或轴承座外侧的传感器还能监测载荷,斯凯孚继续致力于这一领域的开发,取得了轴承状态监测领域的突破性创新 —— 基于无线技术的斯凯孚洞悉(SKF Insight™)。现在,借助在各种技术上的突破性进展,轴承无需外部电源、传感器、电缆或电子数据采集装置就能持续传送运行状态 ,因为一切都集成在轴承内部。 斯凯孚洞悉(SKF Insight™)解决方案包括: 测量转速、温度、速度、加速度、声发射和载荷等重要参数的微型传感技术组件。 自供电 —— 智能轴承可利用应用环境自行产生运行所需的电能。 无需安装传感器或电缆的简洁设计 —— 智能无线通讯技术集成于轴承内部,使其能够在传统WiFi无法运行的环境中进行通讯。 智能轴承网络

Premature bearing failures in wind gearboxes and white etching cracks (WEC)

Premature bearing failures in wind gearboxes and white etching cracks (WEC)(0)

Kenred Stadler, SKF programme manager renewable energy application development centre, Schweinfurt, Germany (corresponding author) Arno Stubenrauch, SKF manager development cluster roller and plain bearings, Schweinfurt, Germany. Wind turbine gearboxes are subjected to a wide variety of operating conditions, some of which may push the bearings beyond their limits. Damage may be done to the bearings,

Single Turn Wave Springs

Single Turn Wave Springs(0)

Conventional Gap and Overlap Type Wave Springs are used in a wide variety of applications. For short deflections and low-medium forces, they function with precision and dependability. Bearing Preload Springs These two types of Smalley Wave Springs permit radial expansion or growth in diameter within a cavity, without the binding or hang-up normally associated with

Surface engineering combats friction and wear

Surface engineering combats friction and wear(0)

BARDEN CORPORATION | PLYMOUTH UK Working together with recognized leaders in advanced coatings and surface treatments has enabled Barden to provide specialized Surface Engineering Technology in support of the most demanding applications for precision bearings. Gary Hughes, Product Engineering Manager at The Barden Corporation, outlines the latest developments. Engineering surfaces are neither perfectly flat, smooth

read more

Contacts and information

Social networks

Most popular categories

Legal Notice

© 2016 BEARING NEWS All rights reserved.